Summer Workshop in Mathematics (SWIM) Kannur University, May, 2025 Week 4 Tutorial problems

May 27, 2025

- 1. Find the eigen values and corresponding eigen vectors of the identity matrix. Do the same for an arbitrary diagonal matrix.
- 2. A $n \times n$ matrix A is said to be nilpotent if there exists a positive integer k such that $A^k = 0$. Prove that all the eigen values of a nilpotent matrix are zero.
- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator given by

$$T(v_1) = 0$$
, $T(v_2) = v_1$, $T(v_3) = v_1 + v_2$.

with respect to a basis $\{v_1, v_2, v_3\}$ of \mathbb{R}^3 . Prove that $T^3 = 0$.

- 4. Let $T: V \to V$ be a linear operator on a vector space of dimension 2. Assume that there is a non-zero vector $v \in V$ such that v is not an eigenvector for T. Prove that $\{v, T(v)\}$ is a basis of V.
- 5. Let $T_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear map given by

$$T_{\theta}(x, y) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).$$

 $(T_{\theta}$ is called the rotation by θ on the plane \mathbb{R}^2). Show that there is no eigen vector of T_{θ} corresponding to any non-zero eigen value.

- 6. Let A be a $n \times n$ matrix such that $A^2 = I$. Prove that only eigenvalues of A are 1, -1.
- 7. Let A be a $n \times n$ matrix where sum of entries in each row is 1. Find an explicit eigenvalue of A and an eigenvector corresponding to that eigenvalue.

May 28, 2025

- 8. Let A be a 2×2 real matrix with an eigen value c. Consider A cI as a linear map from \mathbb{R}^2 to \mathbb{R}^2 . Prove that nullity of A cI is non-zero and hence A cI is not invertible.
- 9. Do A and A^t have the same eigenvalues? Justify your answer.
- 10. Two $n \times n$ matrices A and B are said to be similar if there exists an invertible matrix P such that $B = P^{-1}AP$. Prove that similar matrices have same eigenvalue.

- 11. If one of A and B are non-singular, prove that AB and BA have same eigenvalues.
- 12. Prove that a real 3×3 matrix has at least one real eigenvalue.
- 13. $SO_3 := \{A \in M_3(\mathbb{R}) \mid AA^t = I = A^tA, \det(A) = 1\}$. Prove that every element $A \in SO_3$ has the eigenvalue 1. (Hint: Use the relations $\det(A) = \det(A^t), A^t(A I) = (I A)^t, \det(-B) = -\det(B)$).
- 14. Let A be a 2×2 matrix, with characteristic polynomial p(t). Prove that

$$p(t) = t^2 - (trA)t + detA.$$

- 15. Let A be a $n \times n$ skew-symmetric matrix where n is odd. Find an explicit eigenvalue of A. What is the determinant of A?
- 16. Let A be a $n \times n$ nilpotent matrix. Prove that $\det(A+I)=1$.
- 17. Let A be a 2×2 real skew-symmetric matrix with positive off-diagonal entries. Can it be similar to a 2×2 real upper triangular matrix with one zero entry in the main diagonal?
- 18. Let A be a 2×2 matrix with all positive entries and $\det(A) > 0$. Prove that

$$\frac{\operatorname{trace}(A)}{2} \ge \sqrt{\det(A)}.$$

May 29, 2025

- 19. Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
 - (a) Find the eigenvectors and eigenvalues of the matrix A.
 - (b) Find a matrix P such that $P^{-1}AP$ is diagonal.
 - (c) Compute A^{30} .
- 20. Let A be a $n \times n$ matrix. Prove that eigen vectors corresponding to distinct eigen values are linearly independent. Use this result to show the following:
- 21. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$. Find the eigenvalues of A and corresponding eigenvectors. Is A diagonalizable? If A is a 2×2 real matrix satisfying $A^2 = I$, then A is diagonalizable.
- 22. Let A be a 2×2 matrix such that $\operatorname{trace}(A) = 0$. Further assume that off-diagonal entries of A are positive. Prove that A^2 has a single positive eigenvalue with multiplicity 2 and it commutes with every matrix, that is, $A^2B = BA^2$ for all $B \in M_2(\mathbb{R})$.
- 23. Let A be a 4×4 skew-symmetric integer matrix. Prove that $\det(A) \in \mathbb{N}$.