Summer Workshop in Mathematics (SWIM) Kannur University, May, 2025 Week 3 Tutorial problems

May 21, 2025

- 1. Let T be the linear map from \mathbb{R}^n to \mathbb{R}^n . Prove that the image of T is determined by values of T on any fixed basis of \mathbb{R}^n .
- 2. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear map. Prove that T is of the form

$$T(x,y) = (ax + by, cx + dy),$$

for some $a, b, c, d \in \mathbb{R}$.

- 3. Let T be the linear map from \mathbb{R}^n to \mathbb{R}^n . Consider the map $S := T \circ T : \mathbb{R}^n \to \mathbb{R}^n$. Then show that S is a linear map.
- 4. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Then show that the kernel of T and image of T are subspaces of \mathbb{R}^n .
- 5. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Then show that T is one-one iff kernel of $T = \{0\}$ and T is onto iff the image of $T = \mathbb{R}^n$.
- 6. Let T be a linear isomorphism of \mathbb{R}^n . Then,
 - (a) T^{-1} is also linear.
 - (b) $T \circ T$ is also an isomorphism.
- 7. Let (v_1, \dots, v_n) be a subset of a vector space V over a field F. Prove that the map $T: F^n \to V$ defined by $T(x) = v_1 x_1 + \dots + v_n x_n$ is a linear transformation.
- 8. Prove that any finite dimensional vector space over \mathbb{R} is linearly isomorphic to \mathbb{R}^n for some $n \in \mathbb{N}$. Using the fact that \mathbb{Q} is countable conclude that \mathbb{R} is not a finite dimensional vector space over \mathbb{Q} .

May 22, 2025

- 9. Is there any injective linear map from \mathbb{R}^3 to \mathbb{R}^2 ?
- 10. Is there any surjective linear map from \mathbb{R}^2 to \mathbb{R}^3 ?

- 11. Show that any injective linear map from \mathbb{R}^n to \mathbb{R}^n is a linear isomorphism. Is the same conclusion true if injective map is replaced by surjective map?
- 12. Let A be an $m \times n$ matrix. Prove that the space of solutions of the linear system AX = 0 has dimension at least n m.
- 13. Let V be a n dimensional vector space and $f: V \to \mathbb{R}$ be a non-zero linear functional. Prove that ker(f) is a n-1 dimensional vector space. Use this result to show that the set of traceless $n \times n$ matrices has dimension $n^2 - 1$.
- 14. Let V be a finite dimensional vector space and $f, g : V \to \mathbb{R}$ be two non-zero linear functionals such that $\ker(f) = \ker(g)$. Show that there exists a non-zero constant c such that g = cf.
- 15. Prove that Trace is a linear functional from $M_n(\mathbb{R})$ to \mathbb{R} which satisfies

$$\operatorname{Trace}(AB - BA) = 0,$$

for all $A, B \in M_n(\mathbb{R})$. If f is a linear functional which satisfies f(AB - BA) = 0, for all $A, B \in M_n(\mathbb{R})$, then show that f = c (Trace) for some $c \in \mathbb{R}$.

16. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation defined by the rule

$$T(x_1, x_2, x_3)^t = (x_1 + x_2, 2x_3 - x_1)^t.$$

What is the matrix of T with respect to the standard bases?

- 17. Let P_n be the vector space given by the set of all polynomials of degree less or equal to n. Show that $\frac{d}{dx}: P_n \to P_{n-1}$ is linear and find the matrix of this linear map with respect to standard basis.
- 18. Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 21 & 22 & 23 & 24 \\ 31 & 32 & 33 & 34 \\ 41 & 42 & 43 & 44 \end{bmatrix}.$
- 19. Find all linear transformations $T : \mathbb{R}^2 \to \mathbb{R}^2$ which carry the line y = x to the line y = 3x.