Summer Workshop in Mathematics (SWIM) Kannur University, May, 2025 Week 2 Tutorial problems

May 12-13, 2025

- 1. Any subset of a linearly independent set in a vector space is linearly independent.
- 2. Prove that the set $\{(5,5,5)^t, (0,6,6)^t, (0,0,7)^t\}$ is linearly independent \mathbb{R}^3 .
- 3. Let V be a n-dimensional vector space over a field \mathbb{R} . Then any linearly independent subset of V containing n elements is a basis of V.
- 4. Let $\{v_1, v_2\}$ be a basis of \mathbb{R}^2 . Prove that $\{v_1 + v_2, v_1 v_2\}$ is also a basis of \mathbb{R}^2 .
- 5. Prove that the set $\{(1,2,0)^t, (2,1,2)^t, (3,1,1)^t\}$ is a basis of \mathbb{R}^3 .
- 6. Let $W \subset \mathbb{R}^4$ be the space of solutions of the system of linear equations AX = 0, where $A = \begin{bmatrix} 2 & 1 & 2 & 3 \\ 1 & 1 & 3 & 0 \end{bmatrix}$. Find a basis for W.
- 7. Let V be a vector space of dimension n over F, and let $0 \le r \le n$. Prove that V contains a subspace of dimension r.
- 8. Let A be an $n \times n$ matrix with entries in a field F. Denote the *i*-th column of A by v_i . For any column vector $X = (x_1, \dots, x_n)^t$, the matrix product $AX = v_1x_1 + \dots + v_nx_n$ is a linear combination of the set (v_1, \dots, v_n) . Prove the following:
 - (a) The set $\{v_1, v_2, \dots, v_n\}$ is linearly independent if and only if the only solution of the equation AX = 0 is the trivial solution X = 0.
 - (b) The columns of A form a basis of F^n if A is invertible.
- 9. Is the set of all real orthogonal 2×2 matrices a vector space over \mathbb{R} ?

May 16, 2025

- 10. Prove or verify the following exercises regarding direct sum of two vector spaces.
 - (a) Let W, W' be two vector subspaces of a finite dimensional vector space V. Prove that $\dim(W \oplus W') = \dim(W) + \dim(W')$.
 - (b) Determine the matrix P of change of basis when the old basis is (e_1, e_2) and the new basis is $(e_1 + e_2, e_1 e_2)$ of \mathbb{R}^2 .

- (c) Prove that the space $M_n(\mathbb{R})$ of all $n \times n$ real matrices is the direct sum of the spaces of symmetric matrices $(A = A^t)$ and of skew-symmetric matrices $(A = -A^t)$.
- (d) Let W be the space of $n \times n$ matrices whose trace is zero. Find a subspace W' so that $M_n(\mathbb{R}) = W \oplus W'$.
- (e) Let UT=the set of all upper traingular 2×2 matrices and LT=the set of all 2×2 lower traingular matrices. Prove that both UT and LT are vector subspaces of $M_2(\mathbb{R})$. Find their dimensions. Is it true that $M_2(\mathbb{R}) = \mathrm{UT} \oplus \mathrm{LT}$?