SUMMER WORKSHOP IN MATHEMATICS

(SWIM@KSOM - 2025)

Analysis

(Problem Sheet 1)

- 1. Prove that limit of a sequence if exist is unique.
- 2. Suppose $a_n \to a$ and $a_n \ge 0$ for all n. Prove that $a \ge 0$.
- 3. Suppose $x_n \to x$ and $y_n \to y$ such that $x_n \le y_n$ for all n. Prove that $x \le y$.
- 4. Evaluate the following limits and prove the convergence:
 - (a) $\lim_{n\to\infty} \frac{3n+2}{n+1}$
 - (b) $\lim_{n\to\infty} \frac{5n+2}{2n-1}$
 - (c) $\lim_{n\to\infty} \frac{1}{\sqrt{n}}$
 - (d) $\lim_{n\to\infty} (\sqrt{n+1} \sqrt{n})$
- 5. Suppose $x_n \to x$ and $y_n \to y$ prove that
 - (a) $x_n \pm y_n \to x \pm y$
 - (b) $x_n y_n \to xy$
 - (c) If $y_n, y \neq 0$, then $\frac{x_n}{y_n} \to \frac{x}{y}$
- 6. Consider the sequence $\{x_n\}$ defined as $x_1 = 0, x_2 = 1$ and

$$x_{n+2} = \frac{x_{n+1} + x_n}{2}.$$

Write first five terms of the sequence.